5 years ago

Two-Dimensional TiO2 Nanosheets for Photo and Electro-Chemical Oxidation of Water: Predictions of Optimal Dopant Species from First-Principles

Two-Dimensional TiO2 Nanosheets for Photo and Electro-Chemical Oxidation of Water: Predictions of Optimal Dopant Species from First-Principles
Yoonyoung Kim, Namhoon Kim, Tatsumi Ishihara, Shintaro Ida, Elif Ertekin, Hidehisa Hagiwara, Emily M. Turner
Due to a high surface area to volume ratio, two-dimensional nanosheets have gained interest for photo and/or electro-catalytic water splitting. In particular, experimental Rh doping of lepidocrocite TiO2 nanosheets has significantly increased catalytic activity. We use first-principles density functional theory to consider the oxygen evolution reaction (OER) on both pristine and transition metal doped systems. While the undoped TiO2 nanosheets exhibit several limitations and require high overpotentials during the water splitting reaction, selected dopants modify the binding strength of reaction intermediates and can reduce rate limiting thermodynamic barriers and theoretical required overpotentials. We present an activity volcano for these nanosheets, with the full spectrum of 3d, 4d, and 5d transition metals as candidate dopants. Subsequent photocatalytic measurements of OER activity with selected dopants are carried out to validate the predictions, and the trends are found to be consistent. These results help describe how surface dopants affect reaction mechanisms and provide general design principles for high performance catalysts during the water splitting reaction.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04725

DOI: 10.1021/acs.jpcc.7b04725

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.