5 years ago

On-the-Fly Adaptive ${k}$ -Space Sampling for Linear MRI Reconstruction Using Moment-Based Spectral Analysis

Brian Hargreaves, Evan Levine,
In high-dimensional magnetic resonance imaging applications, time-consuming, sequential acquisition of data samples in the spatial frequency domain ( ${k}$ -space) can often be accelerated by accounting for dependencies in linear reconstruction, at the cost of noise amplification that depends on the sampling pattern. Common examples are support-constrained, parallel, and dynamic MRI, and ${k}$ -space sampling strategies are primarily driven by image-domain metrics that are expensive to compute for arbitrary sampling patterns. It remains challenging to provide systematic and computationally efficient automatic designs of arbitrary multidimensional Cartesian sampling patterns that mitigate noise amplification, given the subspace to which the object is confined. To address this problem, this paper introduces a theoretical framework that describes local geometric properties of the sampling pattern and relates them to the spread in the eigenvalues of the information matrix described by its first two spectral moments. This new criterion is then used for very efficient optimization of complex multidimensional sampling patterns that does not require reconstructing images or explicitly mapping noise amplification. Experiments with in vivo data show strong agreement between this criterion and traditional, comprehensive image-domain- and ${k}$ -space-based metrics, indicating the potential of the approach for computationally efficient (on-the-fly), automatic, and adaptive design of sampling patterns.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.