5 years ago

On the Expressive Completeness of Bernays-Sch\"onfinkel-Ramsey Separation Logic.

Radu Iosif, Mnacho Echenim, Nicolas Peltier

This paper investigates the satisfiability problem for Separation Logic, with unrestricted nesting of separating conjunctions and implications, for prenex formulae with quantifier prefix in the language $\exists^*\forall^*$, in the cases where the universe of possible locations is either countably infinite or finite. In analogy with first-order logic with uninterpreted predicates and equality, we call this fragment Bernays-Sch\"onfinkel-Ramsey Separation Logic [BSR(SLk)]. We show that, unlike in first-order logic, the (in)finite satisfiability problem is undecidable for BSR(SLk) and we define two non-trivial subsets thereof, that are decidable for finite and infinite satisfiability, respectively, by controlling the occurrences of universally quantified variables within the scope of separating implications, as well as the polarity of the occurrences of the latter. The decidability results are obtained by a controlled elimination of separating connectives, described as (i) an effective translation of a prenex form Separation Logic formula into a combination of a small number of \emph{test formulae}, using only first-order connectives, followed by (ii) a translation of the latter into an equisatisfiable first-order formula.

Publisher URL: http://arxiv.org/abs/1802.00195

DOI: arXiv:1802.00195v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.