Energy Propagation in Deep Convolutional Neural Networks.
Many practical machine learning tasks employ very deep convolutional neural networks. Such large depths pose formidable computational challenges in training and operating the network. It is therefore important to understand how fast the energy contained in the propagated signals (a.k.a. feature maps) decays across layers. In addition, it is desirable that the feature extractor generated by the network be informative in the sense of the only signal mapping to the all-zeros feature vector being the zero input signal. This "trivial null-set" property can be accomplished by asking for "energy conservation" in the sense of the energy in the feature vector being proportional to that of the corresponding input signal. This paper establishes conditions for energy conservation (and thus for a trivial null-set) for a wide class of deep convolutional neural network-based feature extractors and characterizes corresponding feature map energy decay rates. Specifically, we consider general scattering networks employing the modulus non-linearity and we find that under mild analyticity and high-pass conditions on the filters (which encompass, inter alia, various constructions of Weyl-Heisenberg filters, wavelets, ridgelets, ($\alpha$)-curvelets, and shearlets) the feature map energy decays at least polynomially fast. For broad families of wavelets and Weyl-Heisenberg filters, the guaranteed decay rate is shown to be exponential. Moreover, we provide handy estimates of the number of layers needed to have at least $((1-\varepsilon)\cdot 100)\%$ of the input signal energy be contained in the feature vector.
Publisher URL: http://arxiv.org/abs/1704.03636
DOI: arXiv:1704.03636v3
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.