5 years ago

Pilot-Assisted Short-Packet Transmission over Multiantenna Fading Channels: A 5G Case Study.

Kittipong Kittichokechai, Giuseppe Durisi, Guido Carlo Ferrante, Johan Östman

Leveraging recent results in finite-blocklength information theory, we investigate the problem of designing a control channel in a 5G system. The setup involves the transmission, under stringent latency and reliability constraints, of a short data packet containing a small information payload, over a propagation channel that offers limited frequency diversity and no time diversity. We present an achievability bound, built upon the random-coding union bound with parameter $s$ (Martinez & Guill\'en i F\`abregas, 2011), which relies on quadrature phase-shift keying modulation, pilot-assisted transmission to estimate the fading channel, and scaled nearest-neighbor decoding at the receiver. Using our achievability bound, we determine how many pilot symbols should be transmitted to optimally trade between channel-estimation errors and rate loss due to pilot overhead. Our analysis also reveals the importance of using multiple antennas at the transmitter and/or the receiver to provide the spatial diversity needed to meet the stringent reliability constraint.

Publisher URL: http://arxiv.org/abs/1801.10552

DOI: arXiv:1801.10552v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.