5 years ago

Problem with the Boltzmann distribution in small systems with boundary induced inhomogeneity.

A. Bhattacharyay

The Boltzmann distribution characterizes equilibrium of a system at thermodynamic limit where inhomogeneity in the bulk is due to some conservative force. In mesoscopic systems, boundary induced inhomogeneities are often present which a conservative force cannot capture. Moreover, there is controversy (It\^o vs Stratonovich) arising from handling of multiplicative noise in the Langevin dynamics of such mesoscopic systems. To make things worse, modification of Fick's law for coordinate dependent diffusion is also considered controversial in existing literature. It is shown here that, the demand of the Boltzmann distribution is untenable for thermodynamic equilibrium in the presence of coordinate (conformation) dependent damping and diffusion. To alleviate confusion about the form of Fick's law, its exact modification for coordinate dependent diffusivity is derived from first principle and the same is used in the relevant Fokker-Planck dynamics. Equilibrium distribution of mesoscopic systems with space dependent damping and diffusion, in general, is shown to be a modified Boltzmann distribution.

Publisher URL: http://arxiv.org/abs/1708.06132

DOI: arXiv:1708.06132v4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.