The BPS sectors of the Skyrme model and their non-BPS extensions.
Two recently found coupled BPS submodels of the Skyrme model are further analyzed. Firstly, we provide a geometrical formulation of the submodels in terms of the eigenvalues of the strain tensor. Secondly, we study their thermodynamical properties and show that the mean-field equations of state coincide at high pressure and read $p=\bar{\rho}/3$. We also provide evidence that matter described by the first BPS submodel has some similarity with a Bose-Einstein condensate. Moreover, we show that extending the second submodel to a non-BPS model by including certain additional terms of the full Skyrme model does not spoil the respective ansatz, leading to an ordinary differential equation for the profile of the Skymion, for any value of the topological charge. This allows for an almost analytical description of the properties of Skyrmions in this model. In particular, we analytically study the breaking and restoration of the BPS property. Finally, we provide an explanation of the success of the rational map ansatz.
Publisher URL: http://arxiv.org/abs/1709.06583
DOI: arXiv:1709.06583v3
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.