Magnetothermodynamics: Measurements of the thermodynamic properties in a relaxed magnetohydrodynamic plasma.
We have explored the thermodynamics of compressed magnetized plasmas in laboratory experiments and we call these studies "magnetothermodynamics". The experiments are carried out in the Swarthmore Spheromak eXperiment device. In this device, a magnetized plasma source is located at one end and at the other end, a closed conducting can is installed. We generate parcels of magnetized plasma and observe their compression against the end wall of the conducting cylinder. The plasma parameters such as plasma density, temperature, and magnetic field are measured during compression using HeNe laser interferometry, ion Doppler spectroscopy and a linear $\dot{B}$ probe array, respectively. To identify the instances of ion heating during compression, a PV diagram is constructed using measured density, temperature, and a proxy for the volume of the magnetized plasma. Different equations of state are analyzed to evaluate the adiabatic nature of the compressed plasma. A 3D resistive magnetohydrodynamic code (NIMROD) is employed to simulate the twisted Taylor states and show stagnation against the end wall of the closed conducting can. The simulation results are consistent to what we observe in our experiments.
Publisher URL: http://arxiv.org/abs/1802.00019
DOI: arXiv:1802.00019v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.