Differential optical shadow sensor for sub-nanometer displacement measurement and its application to drag-free satellites.
We present a method for 3D sub-nanometer displacement measurement using a set of differential optical shadow sensor. It is based on using pairs of collimated beams on opposite sides of an object that are partially blocked by it. Applied to a sphere, our 3-axis sensor module consists of 8 parallel beam-detector sets for redundancy. The sphere blocks half of each beam power in the nominal centered position, and any displacement can be measured by the differential optical power changes amongst the pairs of detectors. We have experimentally demonstrated a displacement sensitivity of 0.87 nm/rtHz at 1 Hz and 0.39 nm/rtHz at 10 Hz. We describe the application of the module to the inertial sensors of a drag-free satellite, which can potentially be used for navigation, geodesy and fundamental science experiments as well as ground based applications.
Publisher URL: http://arxiv.org/abs/1708.09335
DOI: arXiv:1708.09335v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.