4 years ago

Robust Bipolar Light Emission and Charge Transport in Symmetric Molecular Junctions

Robust Bipolar Light Emission and Charge Transport in Symmetric Molecular Junctions
Frederic Lafolet, Richard L. McCreery, Ushula M. Tefashe, Quyen Van Nguyen, Jean-Christophe Lacroix
Molecular junctions consisting of a Ru(bpy)3 oligomer between conducting carbon contacts exhibit an exponential dependence of junction current on molecular layer thickness (d) similar to that observed for other aromatic devices when d < 4 nm. However, when d > 4 nm, a change in transport mechanism occurs which coincides with light emission in the range of 600–900 nm. Unlike light emission from electrochemical cells or solid-state films containing Ru(bpy)3, emission is bipolar, occurs in vacuum, has rapid rise time (<5 ms), and persists for >10 h. Light emission directly indicates simultaneous hole and electron injection and transport, possibly resonant due to the high electric field present (>3 MV/cm). Transport differs fundamentally from previous tunneling and hopping mechanisms and is a clear “molecular signature” relating molecular structure to electronic behavior.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b02563

DOI: 10.1021/jacs.7b02563

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.