Synthetic lattices, flat bands and localization in Rydberg quantum simulators.
The most recent manifestation of cold Rydberg atom quantum simulators that employs tailored optical tweezer arrays enables the study of many-body dynamics under so-called facilitation conditions. We show how the facilitation mechanism yields a Hilbert space structure in which the many-body states organize into synthetic lattices, which feature in general one or several flat bands and may support immobile localized states. We focus our discussion on the case of a ladder lattice geometry for which we analyze in particular the influence of disorder generated by the uncertainty of the atomic positions. The localization properties of this system are characterized through two localization lengths which are found to display anomalous scaling behavior at certain energies. Moreover, we discuss the experimental preparation of an immobile localized state, and analyze disorder-induced propagation effects.
Publisher URL: http://arxiv.org/abs/1802.00379
DOI: arXiv:1802.00379v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.