3 years ago

Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface

Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface
Rui Hao, Bo Zhang, Yunshan Fan
The electrochemical interface is an ultrathin interfacial region between the electrode surface and the electrolyte solution and is often characterized by numerous dynamic processes, such as solvation and desolvation, heterogeneous electron transfer, molecular adsorption and desorption, diffusion, and surface rearrangement. Many of these processes are driven and modulated by the presence of a large interfacial potential gradient. The study and better understanding of the electrochemical interface is important for designing better electrochemical systems where their applications may include batteries, fuel cells, electrocatalytic water splitting, corrosion protection, and electroplating. This, however, has proved to be a challenging analytical task due to the ultracompact and dynamic evolving nature of the electrochemical interface. Here, we describe the use of an electrochemical nanocell to image the dynamic collision and oxidation process of single silver nanoparticles at the surface of a platinum nanoelectrode. A nanocell is prepared by depositing a platinum nanoparticle at the tip of a quartz nanopipette forming a bipolar nanoelectrode. The compact size of the nanocell confines the motion of the silver nanoparticle in a 1-D space. The highly dynamic process of nanoparticle collision and oxidation is imaged by single-particle fluorescence microscopy. Our results demonstrate that silver nanoparticle collision and oxidation is highly dynamic and likely controlled by a strong electrostatic effect at the electrode/solution interface. We believe that the use of a platinum nanocell and single molecule/nanoparticle fluorescence microscopy can be extended to other systems to yield highly dynamic information about the electrochemical interface.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06431

DOI: 10.1021/jacs.7b06431

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.