5 years ago

Continuous-variable supraquantum nonlocality.

Leandro Aolita, Adrien Laversanne-Finot, Andreas Ketterer

Supraquantum nonlocality refers to correlations that are more nonlocal than allowed by quantum theory but still physically conceivable in post-quantum theories, in the sense of respecting the basic no-faster-than-light communication principle. While supraquantum correlations are relatively well understood for finite-dimensional systems, little is known in the infinite-dimensional case. Here, we study supraquantum nonlocality for bipartite systems with two measurement settings and infinitely many outcomes per subsystem. We develop a formalism for generic no-signaling black-box measurement devices with continuous outputs in terms of probability measures, instead of probability distributions, which involves a few technical subtleties. We show the existence of a class of supraquantum Gaussian correlations, which violate the Tsirelson bound of an adequate continuous-variable Bell inequality. We then introduce the continuous-variable version of the celebrated Popescu-Rohrlich (PR) boxes, as a limiting case of the above-mentioned Gaussian ones. Finally, we perform a characterisation of the geometry of the set of continuous-variable no-signaling correlations. Namely, we show that that the convex hull of the continuous-variable PR boxes is dense in the no-signaling set. We also show that these boxes are extreme in the set of no-signaling behaviours and provide evidence suggesting that they are indeed the only extreme points of the no-signaling set. Our results lay the grounds for studying generalized-probability theories in continuous-variable systems.

Publisher URL: http://arxiv.org/abs/1707.05337

DOI: arXiv:1707.05337v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.