3 years ago

Isolation and Characterization of Regioisomers of Pyrazole-Based Palladacycles and Their Use in α-Alkylation of Ketones Using Alcohols

Isolation and Characterization of Regioisomers of Pyrazole-Based Palladacycles and Their Use in α-Alkylation of Ketones Using Alcohols
Nishant Sharma, Upakarasamy Lourderaj, Shaikh Samser, Ramesh Mamidala, Krishnan Venkatasubbaiah
Regioisomers of 3,5-diphenyl-1-(4-(trifluoromethyl)phenyl)-1H-pyrazole-based palladacycles (1 and 2) were synthesized by the aromatic C–H bond activation of N/3-aryl ring. The application of these regioisomers as catalysts to enable the formation of α-alkylated ketones or quinolines with alcohols using a hydrogen borrowing process is evaluated. Experimental results reveal that palladacycle 2 is superior over palladacycle 1 to catalyze the reaction under similar reaction conditions. The reaction mechanisms for the palladacycles 1 and 2 catalyzed α-alkylation of acetophenone were studied using density functional theoretical (DFT) methods. The DFT studies indicate that palladacycle 2 has an energy barrier lower than that of palladacycle 1 for the alkylation reaction, consistent with the better catalytic activity of palladacycle 2 seen in the experiments. The palladacycle–phosphine system was found to tolerate a wide range of functional groups and serves as an efficient protocol for the synthesis of α-alkylated products under solvent-free conditions. In addition, the synthetic protocol was successfully applied to prepare donepezil, a drug for Alzheimer’s disease, from simple starting materials.

Publisher URL: http://dx.doi.org/10.1021/acs.organomet.7b00478

DOI: 10.1021/acs.organomet.7b00478

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.