3 years ago

Hierarchical Porous Co9S8/Nitrogen-Doped Carbon@MoS2 Polyhedrons as pH Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction

Hierarchical Porous Co9S8/Nitrogen-Doped Carbon@MoS2 Polyhedrons as pH Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction
Hongmei Li, Li Shao, Chong Xu, Xiancai Jiang, Xing Qian, Shaowei Huang, Linxi Hou, Changli Zhu
The development of highly active and stable earth-abundant electrocatalysts to reduce or eliminate the reliance on noble-metal based ones for hydrogen evolution reaction (HER) over a broad pH range remains a great challenge. Herein, hierarchical porous Co9S8/N-doped carbon@MoS2 (Co9S8/NC@MoS2) polyhedrons have been synthesized by a facile hydrothermal approach using highly conductive Co/NC polyhedrons composed of cobalt nanoparticles embedded in N-doped carbon matrices as both the structural support and cobalt source. The Co/NC polyhedrons were prepared by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) in Ar atmosphere. Benefiting from the prominent synergistic effect of N-doped carbon enhancing the conductivity of the hybrid, MoS2 and Co9S8 providing abundant catalytically active sites as well as the well-defined polyhedral structure promoting mechanical stability, the as-synthesized Co9S8/NC@MoS2 shows excellent HER activity and good stability over a broad pH range, with onset overpotentials of 4, 38, and 45 mV, Tafel slopes of 60.3, 68.8, and 126.1 mV dec–1, and overpotentials of 67, 117, and 261 mV at 10 mA cm–2 in 1.0 M KOH, 0.5 M H2SO4, and 1.0 M phosphate buffer solution (PBS), respectively. This work provides a general and promising approach for the design and synthesis of inexpensive and efficient pH-universal HER electrocatalysts.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06384

DOI: 10.1021/acsami.7b06384

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.