3 years ago

Ultrasmall Superparamagnetic Iron Oxide Nanoparticle for T2-Weighted Magnetic Resonance Imaging

Ultrasmall Superparamagnetic Iron Oxide Nanoparticle for T2-Weighted Magnetic Resonance Imaging
Fuping Gao, Yanan Chang, Yuliang Zhao, Xueyun Gao, Lina Zhao, Kai Zhang, Chao Xu, Yaling Wang
A facile method to synthesize ultrasmall-sized supermagnetic iron oxide nanoparticles with good monodispersity and high relaxivity is desired for magnetic resonance imaging (MRI) technology. Herein, we have developed a one-step method to direct the formation of superparamagnetic iron oxide nanoparticle (uBSPIO) using albumin under mild conditions. The resulting uBSPIO possess ultrasmall size (4.78 ± 0.55 nm) and super high MR relaxivity (444.56 ± 8.82 mM–1 s–1). After grafted by the luteinizing hormone release hormone peptide (LHRH), the uBSPIO could targeted and accumulated in the tumor site. Finally, the uBSPIOs had good stability and did not induce cytotoxicity in vitro or major organ toxicity in vivo. The uBSPIOs are promising contrast agents for MRI.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b10030

DOI: 10.1021/acsami.7b10030

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.