3 years ago

Flexible SiC/Si3N4 Composite Nanofibers with in Situ Embedded Graphite for Highly Efficient Electromagnetic Wave Absorption

Flexible SiC/Si3N4 Composite Nanofibers with in Situ Embedded Graphite for Highly Efficient Electromagnetic Wave Absorption
Laifei Cheng, Peng Wang, Yani Zhang, Litong Zhang
SiC/Si3N4 composite nanofibers with in situ embedded graphite, which show highly efficient electromagnetic (EM) wave absorption performance in gigahertz frequency, were prepared by electrospinning with subsequent polymer pyrolysis and annealing. By means of incorporating graphite and Si3N4 into SiC, the EM wave absorption properties of the nanofibers were improved. The relationship among processing, fiber microstructure, and their superior EM wave absorption performance was systematically investigated. The EM wave absorption capability and effective absorption bandwidth (EAB) of nanofibers can be simply controlled by adjusting annealing atmosphere and temperature. The nanofibers after annealing at 1300 °C in Ar present a minimum reflection loss (RL) of −57.8 dB at 14.6 with 5.5 GHz EAB. The nanofibers annealed in N2 at 1300 °C exhibit a minimum RL value of −32.3 dB at a thickness of 2.5 mm, and the EAB reaches 6.4 GHz over the range of 11.3–17.7 GHz. The highly efficient EM wave absorption performance of nanofibers are closely related to dielectric loss, which originated from interfacial polarization and dipole polarization. The excellent absorbing performance together with wider EAB endows the composite nanofibers potential to be used as reinforcements in polymers and ceramics (SiC, Si3N4, SiO2, Al2O3, etc.) to improve their EM wave absorption performance.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05382

DOI: 10.1021/acsami.7b05382

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.