5 years ago

Sensory deprivation after focal ischemia in mice accelerates brain remapping and improves functional recovery through Arc-dependent synaptic plasticity.

Joseph P Culver, Adam Q Bauer, Andrew W Kraft, Jin-Moo Lee
Recovery after stroke, a major cause of adult disability, is often unpredictable and incomplete. Behavioral recovery is associated with functional reorganization (remapping) in perilesional regions, suggesting that promoting this process might be an effective strategy to enhance recovery. However, the molecular mechanisms underlying remapping after brain injury and the consequences of its modulation are poorly understood. Focal sensory loss or deprivation has been shown to induce remapping in the corresponding brain areas through activity-regulated cytoskeleton-associated protein (Arc)-mediated synaptic plasticity. We show that targeted sensory deprivation via whisker trimming in mice after induction of ischemic stroke in the somatosensory cortex representing forepaw accelerates remapping into the whisker barrel cortex and improves sensorimotor recovery. These improvements persisted even after focal sensory deprivation ended (whiskers allowed to regrow). Mice deficient in Arc, a gene critical for activity-dependent synaptic plasticity, failed to remap or recover sensorimotor function. These results indicate that post-stroke remapping occurs through Arc-mediated synaptic plasticity and is required for behavioral recovery. Furthermore, our findings suggest that enhancing perilesional cortical plasticity via focal sensory deprivation improves recovery after ischemic stroke in mice.

Publisher URL: http://doi.org/10.1126/scitranslmed.aag1328

DOI: 10.1126/scitranslmed.aag1328

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.