3 years ago

ToNER: A tool for identifying nucleotide enrichment signals in feature-enriched RNA-seq data

Jittima Piriyapongsa, Pavita Kaewprommal, Yuttachon Promworn, Philip J. Shaw, Sissades Tongsima, Apichart Intarapanich

by Yuttachon Promworn, Pavita Kaewprommal, Philip J. Shaw, Apichart Intarapanich, Sissades Tongsima, Jittima Piriyapongsa

Background

Biochemical methods are available for enriching 5′ ends of RNAs in prokaryotes, which are employed in the differential RNA-seq (dRNA-seq) and the more recent Cappable-seq protocols. Computational methods are needed to locate RNA 5′ ends from these data by statistical analysis of the enrichment. Although statistical-based analysis methods have been developed for dRNA-seq, they may not be suitable for Cappable-seq data. The more efficient enrichment method employed in Cappable-seq compared with dRNA-seq could affect data distribution and thus algorithm performance.

Results

We present Transformation of Nucleotide Enrichment Ratios (ToNER), a tool for statistical modeling of enrichment from RNA-seq data obtained from enriched and unenriched libraries. The tool calculates nucleotide enrichment scores and determines the global transformation for fitting to the normal distribution using the Box-Cox procedure. From the transformed distribution, sites of significant enrichment are identified. To increase power of detection, meta-analysis across experimental replicates is offered. We tested the tool on Cappable-seq and dRNA-seq data for identifying Escherichia coli transcript 5′ ends and compared the results with those from the TSSAR tool, which is designed for analyzing dRNA-seq data. When combining results across Cappable-seq replicates, ToNER detects more known transcript 5′ ends than TSSAR. In general, the transcript 5′ ends detected by ToNER but not TSSAR occur in regions which cannot be locally modeled by TSSAR.

Conclusion

ToNER uses a simple yet robust statistical modeling approach, which can be used for detecting RNA 5′ends from Cappable-seq data, in particular when combining information from experimental replicates. The ToNER tool could potentially be applied for analyzing other RNA-seq datasets in which enrichment for other structural features of RNA is employed. The program is freely available for download at ToNER webpage (http://www4a.biotec.or.th/GI/tools/toner) and GitHub repository (https://github.com/PavitaKae/ToNER).

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0178483

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.