5 years ago

Rational Design of GO-Modified Fe3O4/SiO2 Nanoparticles with Combined Rhenium-188 and Gambogic Acid for Magnetic Target Therapy

Rational Design of GO-Modified Fe3O4/SiO2 Nanoparticles with Combined Rhenium-188 and Gambogic Acid for Magnetic Target Therapy
Hongming Yuan, Chaoying Ni, Yuxiang Yang, Haowei Shi, Huan Yang, Chao Cheng, Yicheng Liu
Peanutlike magnetic-fluorescent Fe3O4/SiO2 nanoparticles, with an effective dynamic diameter of 180 nm, were synthesized via EuO+ doping and coupling of two Fe3O4 cores and reassembling through the solvothermal process. Spherical pure Fe3O4/SiO2 nanoparticles with an effective dynamic diameter of 230 nm were also prepared for comparison. We designed graphene oxide (GO)-modified core–shell Fe3O4/SiO2 nanoparticles as a nanocarrier for loading gambogic acid (GA) following labeling with radioisotope rhenium-188. We also performed GA loading and releasing on GA-loaded magnetic nanoparticles, in vivo biodistribution, and magnetic drug targeting therapy experiments. Results indicated that the GA-loaded magnetic nanoparticles demonstrate a clear pH-dependent drug release behavior, having a higher release rate in acidic environments. The in vivo biodistribution of the magnetic nanoparticles has morphologic dependency, and the peanutlike nanoparticles (PN-Fe3O4) tend to accumulate more in the spleen, lung, and liver than in the spherical nanoparticles (S-Fe3O4). The targeted therapy showed a higher efficacy of PN-Fe3O4 in inhibiting tumor cell growth than the nontargeted therapy. The polyethyleneimine (PEI) grafting of PN-Fe3O4 with amide bond was also designed to find an effective active targeting antitumor agent considering the fact that the PEI–GO conjugate has a higher GA load efficiency and the convergence effect.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07589

DOI: 10.1021/acsami.7b07589

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.