5 years ago

New Insights into Antibiofilm Effect of a Nanosized ZnO Coating against the Pathogenic Methicillin Resistant Staphylococcus aureus

New Insights into Antibiofilm Effect of a Nanosized ZnO Coating against the Pathogenic Methicillin Resistant Staphylococcus aureus
Marta M. Alves, Maria de Fátima Montemor, Ons Bouchami, Maria Miragaia, Ana Tavares, Catarina F. Santos, Laura Córdoba
ZnO nanoparticles (NPs) are arising as promising novel antibiotics toward device-related infections. The surface functionalization of Zn, a novel resorbable biomaterial, with ZnO NPs could present an effective solution to overcome such a threat. In this sense, the antibacterial and antibiofilm activity of nano- and microsized ZnO coatings was studied against clinically relevant bacteria, methicillin resistant Staphylococcus aureus (MRSA). The bacterial viability of planktonic and biofilm cells together with the corresponding biofilm structures revealed that only the nanosized ZnO coating had an antibiofilm effect. To elucidate this effect, a novel approach was taken: preconditioning of bacteria with this ZnO coating followed by exposure to subinhibitory concentrations of antibiotics with well-known modes of actions. This approached revealed (i) a decreased biofilm formation in combination with gentamycin, targeting protein synthesis, and (ii) an increased biofilm formation in the presence of rifampicin and vancomycin, acting on RNA and cell wall biosynthesis, respectively. The increased bacteria resistance to these two antibiotics gave new insights into the antibiofilm effect of this nanosized ZnO coating. The synergistic effect observed for gentamycin opened new perspectives for the design of effective solutions against implant-related infections. During the in vitro degradation of this nanosized ZnO-coated Zn, a specific corrosion product, hopeite [Zn3(PO4)2], was depicted. Interestingly, the increased deposition of hopeite-derived compounds on MRSA cells surface seemed to be related to unhealthy and dead bacterial cells. This observation suggested that hopeite may well play a key role in this antibiofilm activity. The results obtained herein shed light on the possible antibacterial effect of a nanosized ZnO coating, and strengthened its antimicrobial (antibacterial and antifungal) potential, therefore providing a potentially effective material to overcome the growing trend of implant-related infections.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b02320

DOI: 10.1021/acsami.7b02320

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.