5 years ago

Controlled Zn2+-Triggered Drug Release by Preferred Coordination of Open Active Sites within Functionalization Indium Metal Organic Frameworks

Controlled Zn2+-Triggered Drug Release by Preferred Coordination of Open Active Sites within Functionalization Indium Metal Organic Frameworks
Ruiqing Fan, Kai Xing, Liangsheng Qiang, Xinya Ran, Haoxin Ye, Xi Du, Ping Wang, Yang Song, Yulin Yang
Drug delivery in target regions could make extraordinary progress in chemoselective therapies. A novel preferred coordination (PC) strategy referring to proactive interacting with open active sites to replace previous occupation by ion-exchange for controlling release of drug molecules is well-constructed. Two topological types of MOF-In1 (Schläfli symbol: (4,8)-connected of (410·615·83)(45·6)2) and MOF-In2 (Schläfli symbol: (4,4)-connected of (66)) show the specific way. Increasing node connectivity as well as the trapping of guest OH anions, 5-fluorouracil (5-FU) is preferentially captured into the MOF-In1, which exhibits an outstanding loading capacity around 34.32 wt %. 19F NMR spectroscopy was further employed to investigate host–guest interaction and reveal the binding constant (Ka = 3.84 × 102 M–1). Meanwhile, the controlled release of 5-FU in a simulated human body with liquid phosphate-buffered saline solution by biofriendly Zn2+-triggered is realized. With an elevated Zn2+ concentration, the drug release will be enhanced. This efficient strategy for MOFs as multifunctional drug carrier opens a new avenue for biological and medical applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09227

DOI: 10.1021/acsami.7b09227

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.