3 years ago

Fast Preparation of Polydopamine Nanoparticles Catalyzed by Fe2+/H2O2 for Visible Sensitive Smartphone-Enabled Cytosensing

Fast Preparation of Polydopamine Nanoparticles Catalyzed by Fe2+/H2O2 for Visible Sensitive Smartphone-Enabled Cytosensing
Miao Yin, Wenwen Du, Lei Jiao, He Li, Zijian Xu
It is highly desired to develop facile methods for fast preparation of polydopamine nanoparticles (PDANS) for intensive promising applications. Considering the system of Fe2+/H2O2 can generate reactive oxygen species efficiently, which can accelerate the self-oxidative polymerization of dopamine, a new time-saving method has been proposed to prepare PDANS catalyzed by Fe2+/H2O2. Thereafter, a novel kind of colorimetric nanoprobe for sensitive detection of human breast cancer cells (MDA-MB-231 cell) based on the obtained PDANS-loaded pH indicator molecules (thymolphthalein) has been developed successfully. The loading capacity of PDANS toward thymolphthalein molecules can reach as high as 165.40 mg/g, which will be a great help to enhancing the sensitivity. Following the color change principle of pH indicators, once simply triggered by basic water, the developed cytosensor offers a visible sensitive smartphone-enabled cytosensing of human breast cancer cells. It has been proved that the rational designed cytosensor is favorable to sensitive detection of cancer cells. By the virtue of its easy use, the proposed smartphone-enabled strategy can provide a novel testing approach for point-of-care bioassay beyond cytosensing in remote areas.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b10564

DOI: 10.1021/acsami.7b10564

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.