3 years ago

Self-Powered Viscosity and Pressure Sensing in Microfluidic Systems Based on the Piezoelectric Energy Harvesting of Flowing Droplets

Self-Powered Viscosity and Pressure Sensing in Microfluidic Systems Based on the Piezoelectric Energy Harvesting of Flowing Droplets
Meng Li, Zhao Wang, Wenchao Jin, Yongming Hu, Yahua He, Gao Liu, Haoshuang Gu, Xumin Pan, Lun Tan
The rapid development of microscaled piezoelectric energy harvesters has provided a simple and highly efficient way for building self-powered sensor systems through harvesting the mechanical energy from the ambient environment. In this work, a self-powered microfluidic sensor that can harvest the mechanical energy of the fluid and simultaneously monitor their characteristics was fabricated by integrating the flexible piezoelectric poly(vinylidene fluoride) (PVDF) nanofibers with the well-designed microfluidic chips. Those devices could generate open-circuit high output voltage up to 1.8 V when a droplet of water is flowing past the suspended PVDF nanofibers and result in their periodical deformations. The impulsive output voltage signal allowed them to be utilized for droplets or bubbles counting in the microfluidic systems. Furthermore, the devices also exhibited self-powered sensing behavior due to the decreased voltage amplitude with increasing input pressure and liquid viscosity. The drop of output voltage could be attributed to the variation of flow condition and velocity of the droplets, leading to the reduced deformation of the piezoelectric PVDF layer and the decrease of the generated piezoelectric potential.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08541

DOI: 10.1021/acsami.7b08541

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.