4 years ago

Fe-MoS4: An Effective and Stable LDH-Based Adsorbent for Selective Removal of Heavy Metals

Fe-MoS4: An Effective and Stable LDH-Based Adsorbent for Selective Removal of Heavy Metals
Zhuqi Chen, Jerosha Ifthikar, Zhuwei Liao, Zhulei Chen, Ajmal Shahzad, Ali Jawad, Zhihua Zhou, Aimal Khan, Ting Wang
It has always been a serious challenge to design efficient, selective, and stable absorbents for heavy-metal removal. Herein, we design layered double hydroxide (LDH)-based Fe-MoS4, a highly efficient adsorbent, for selective removal of heavy metals. We initially synthesized FeMgAl-LDH and then enriched its protective layers with MoS42– anions as efficient binding sites for heavy metals. Various characterization tools, such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray, X-ray photoelectron spectroscopy (XPS), CHN analysis, and inductively coupled plasma analysis, were applied to confirm structural and compositional changes during the synthesis of Fe-MoS4 as final product. The prepared Fe-MoS4 offered excellent attraction for heavy metals, such as Hg2+, Ag+, Pb2+, and Cu2+, and displayed selectivity in the order Hg2+ ∼ Ag+ > Pb2+ > Cu2+ > Cr6+ > As3+ > Ni2+ ∼ Zn2+ ∼ Co2+. The immense capacities of Hg2+, Ag+, and Pb2+ (583, 565, and 346 mg/g, respectively), high distribution coefficient (Kd ∼ 107–108), and fast kinetics place Fe-MoS4 on the top of materials list known for removal of such metals. The sorption kinetics and isothermal studies conducted on Hg2+, Ag+, Pb2+, and Cu2+ suit well pseudo-second-order kinetics and Langmuir model, suggesting monolayer chemisorption mechanism through M–S linkages. XRD and FTIR studies suggested that adsorbed metals could result as coordinated complexes in LDH interlayer region. More interestingly, LDH structure offers protective space for MoS42– anions to avoid oxidation under ambient environments, as confirmed by XPS studies. These features provide Fe-MoS4 with enormous capacity, good reusability, and excellent selectivity even in the presence of huge concentration of common cations.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07208

DOI: 10.1021/acsami.7b07208

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.