3 years ago

Enhanced Oxygen Evolution Reaction Electrocatalysis via Electrodeposited Amorphous α-Phase Nickel-Cobalt Hydroxide Nanodendrite Forests

Enhanced Oxygen Evolution Reaction Electrocatalysis via Electrodeposited Amorphous α-Phase Nickel-Cobalt Hydroxide Nanodendrite Forests
Hanfei Zhang, Anirudh Balram, Sunand Santhanagopalan
We demonstrate an electrodeposition method to rapidly grow novel three-dimensional nanodendrite forests of amorphous α-phase mixed nickel-cobalt hydroxides on stainless steel foil toward high performance electrocatalysis of the oxygen evolution reaction (OER). The proposed hydrogen bubble-templated, diffusion-limited deposition process leads to the unprecedented dendritic growth of vertically aligned amorphous metal hydroxides, induced by the controlled electrolysis of the tuned water content in the primarily alcohol-based deposition solution. The hierarchical nature of these binder-free, amorphous metal hydroxide deposits leads to their superhydrophilic nature and underwater superaerophobic behavior. The combination of all of these qualities leads to exemplary catalytic performance. When directly grown on planar stainless steel substrates, these nanoforests show high OER activity with overpotentials as low as ∼255 mV to produce a current density of 10 mA cm–2 over 10 000 accelerated stability test cycles. This work demonstrates a novel fabrication technique that can simultaneously achieve a dendritic hierarchical structure, vertical alignment, superaerophobicity, amorphous crystal structure, and intimate contact with the substrate that leads to high catalytic activity with excellent durability.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05735

DOI: 10.1021/acsami.7b05735

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.