5 years ago

Coalescence-Induced Self-Propulsion of Droplets on Superomniphobic Surfaces

Coalescence-Induced Self-Propulsion of Droplets on Superomniphobic Surfaces
Arun K. Kota, Wei Wang, Hamed Vahabi, Seth Davies, Joseph M. Mabry
We utilized superomniphobic surfaces to systematically investigate the different regimes of coalescence-induced self-propulsion of liquid droplets with a wide range of droplet radii, viscosities, and surface tensions. Our results indicate that the nondimensional jumping velocity Vj* is nearly constant (Vj* ≈ 0.2) in the inertial-capillary regime and decreases in the visco-capillary regime as the Ohnesorge number Oh increases, in agreement with prior work. Within the visco-capillary regime, decreasing the droplet radius R0 results in a more rapid decrease in the nondimensional jumping velocity Vj* compared to increasing the viscosity μ. This is because decreasing the droplet radius R0 increases the inertial-capillary velocity Vic in addition to increasing the Ohnesorge number Oh.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09344

DOI: 10.1021/acsami.7b09344

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.