4 years ago

Dual Functional Ta-Doped Electrospun TiO2 Nanofibers with Enhanced Photocatalysis and SERS Detection for Organic Compounds

Dual Functional Ta-Doped Electrospun TiO2 Nanofibers with Enhanced Photocatalysis and SERS Detection for Organic Compounds
Raju Kumar Gupta, Jai Prakash, Narendra Singh, Ashutosh Sharma, Mrinmoy Misra
There is a growing interest in multifunctional nanomaterials for the detection as well as degradation of organic contaminants in the water. In this work, we report on the development of dual functional TiO2 nanofibers (TNF) with different tantalum (Ta) doping (1–10 mol %) by a simple electrospinning technique. As-prepared TNF show mesoporous dominant structure, which are favorable for photocatalytic activity due to the presence of catalytic spots. Ta doping decreases the crystalline size within TiO2 matrix because of the incorporation of Ta5+ ions and restricts the phase transformation from anatase to rutile. Ta doping slightly enhances the visible light absorption because of the Ti3+ defects sites created upon Ta5+ doping. The effect of Ta doping within TiO2 matrix was systematically studied for the degradation of methylene blue (MB) dye under ultraviolet (UV) and solar light irradiation. The 5% Ta-doped TNF were found to be optimal and showed 5.1 and 2.2 times higher photocatalytic activity as compared to TNF under UV and solar light irradiation, respectively. The effect of Ta doping for the detection of MB molecules was also studied by surface enhanced Raman scattering (SERS). It was observed that 5% Ta-doped TNF exhibit higher photocatalytic activity and enhanced SERS signals of adsorbed MB molecules as compared to the TNF. The enhanced photocatalytic and SERS activities can be explained as combined effects of enhanced visible light absorption, lower crystalline size, and slightly higher surface area. The observed results show that Ta doping induces new energy levels below the conduction band of TiO2 because of Ti3+ defects, which inhibit the photogenerated charge recombination acting as electron traps and promote charge transfer mechanism acting as an intermediate state for TiO2 to MB molecule electron transfer, and are mainly responsible for the enhanced photocatalytic and SERS activities, respectively.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07571

DOI: 10.1021/acsami.7b07571

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.