5 years ago

Building a Novel Chemically Modified Polyaniline/Thermally Reduced Graphene Oxide Hybrid through π–π Interaction for Fabricating Acrylic Resin Elastomer-Based Composites with Enhanced Dielectric Property

Building a Novel Chemically Modified Polyaniline/Thermally Reduced Graphene Oxide Hybrid through π–π Interaction for Fabricating Acrylic Resin Elastomer-Based Composites with Enhanced Dielectric Property
Hua Ren, Kai Yang, Jing-Wen Wang, Lei Wei, Jing Shao, Sen-Qiang Wu
Sustainability urgently demands low dielectric loss and low elastic modulus as fostering high permittivity (Hi-K) conductor/polymer composites. This work introduces a ternary composite system, consisting of acrylic resin elastomer (AR), chemically modified polyaniline (HBSiPA), and the thermally reduced graphene oxides (TrGOs), for applying to actuators, of which AR was fabricated by free radical polymerization. The unique hybridized graphene (HBSiPA–TrGO) was prepared by a two-step procedure, including the doped polyaniline modified by the hyperbranched polysiloxane via a ring opening reaction, followed by the decoration of HBSiPA on the surface of TrGO, the conductivity of which is desired to be the same as that of graphene. Afterward, diverse filler contents of HBSiPA–TrGO were put into the AR matrix to fabricate composites with the solution casting method and TrGO/AR composites were fabricated as well for comparison. Unlike TrGO, HBSiPA has plenty of polyaniline chain segments that ensure better dispersion of graphene hybrids in the AR, and thus the composites inherit the excellent electrical property of graphene. The permittivity and dielectric loss of the HBSiPA–TrGO/AR composite at 100 Hz are 3.5 and 0.27 times that of the TrGO/AR composite, respectively, when the loading of fillers approaches the percolation threshold (fc), which originates from the HBSiPA anchored onto the graphene serving as spacer and thus decreases the leakage currents induced by the contact of graphene sheets. Besides, the elastic modulus of 2.83 vol % HBSiPA–TrGO/AR composite was lower than 5 MPa.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07785

DOI: 10.1021/acsami.7b07785

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.