4 years ago

Mussel-Inspired Architecture of High-Flux Loose Nanofiltration Membrane Functionalized with Antibacterial Reduced Graphene Oxide–Copper Nanocomposites

Mussel-Inspired Architecture of High-Flux Loose Nanofiltration Membrane Functionalized with Antibacterial Reduced Graphene Oxide–Copper Nanocomposites
Kristel Bernaerts, Alexander Volodin, Yiming Zhang, Jing Wang, Bart Van der Bruggen, Yatao Zhang, Junyong Zhu, Jiuyang Lin, Jian Li, Shushan Yuan, Adam Andrew Uliana, Kenneth Simoens, Miaomiao Tian
Graphene-based nanocomposites have a vast potential for wide-ranging antibacterial applications due to the inherently strong biocidal activity and versatile compatibility of such nanocomposites. Therefore, graphene-based functional nanomaterials can introduce enhanced antibiofouling and antimicrobial properties to polymeric membrane surfaces. In this study, reduced graphene oxide–copper (rGOC) nanocomposites were synthesized as newly robust biocides via in situ reduction. Inspired by the emerging method of bridging ultrafiltration membrane surface cavities, loose nanofiltration (NF) membranes were designed using a rapid (2 h) bioinspired strategy in which rGOC nanocomposites were firmly codeposited with polydopamine (PDA) onto an ultrafiltration support. A series of analyses (SEM, EDS, XRD, XPS, TEM, and AFM) confirmed the successful synthesis of the rGO–Cu nanocomposites. The secure loading of rGOC composites onto the membrane surfaces was also confirmed by SEM and AFM images. Water contact angle results display a high surface hydrophilicity of the modified membranes. The PDA-rGOC functionalization layer facilitated a high water permeability (22.8 L m–2 h–1 bar–1). The PDA-rGOC modification additionally furnished the membrane with superior separation properties advantageous for various NF applications such as dye purification or desalination, as ultrahigh (99.4% for 0.5 g L–1 reactive blue 2) dye retention and high salt permeation (7.4% for 1.0 g L–1 Na2SO4, 2.5% for 1.0 g L–1 NaCl) was achieved by the PDA-rGOC-modified membranes. Furthermore, after 3 h of contact with Escherichia coli (E. coli) bacteria, the rGOC-functionalized membranes exhibited a strong antibacterial performance with a 97.9% reduction in the number of live E. coli. This study highlights the use of rGOC composites for devising loose NF membranes with strong antibacterial and separation performance.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05930

DOI: 10.1021/acsami.7b05930

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.