5 years ago

Ultrasensitive Silicon Nanowire Sensor Developed by a Special Ag Modification Process for Rapid NH3 Detection

Ultrasensitive Silicon Nanowire Sensor Developed by a Special Ag Modification Process for Rapid NH3 Detection
Diao Liu, Yuxiang Qin, Zhen Cui, Tianyi Zhang
Surface functionalization is very effective in enhancing sensing properties of a chemiresistive gas sensor. In this work, we develop a novel and cost-effective process to prepare Ag-modified silicon nanowire (SiNW) sensors and further suggest a resistance effect model to clarify the enhanced sensing mechanism of Ag-modified SiNWs. The SiNWs were formed via metal-assisted chemical etching (MACE), and the Ag nanoparticle (NP) modification was achieved in situ based on the MACE-produced Ag dendrites by involving a crucial anisotropic postetching of TMAH. The TMAH etching induces a loose array of needle-like, rough SiNWs (RNWs) with firm attachment of tiny Ag NPs. Comparative investigations for NH3-sensing properties indicate that the RNWs modified by discrete Ag NPs (Ag@RNWs) display an ∼3-fold enhancement in gas response at room temperature compared with pristine SiNWs. Meanwhile, transient response and ultrafast recovery are observed for the Ag@RNW sensor (tres ≤ 2 s and trec ≤ 9 s to 0.33–10 ppm of NH3). The study demonstrates the considerable effect and potential of the Ag modification process developed in this work. A resistance effect model was further suggested to clarify the underlying mechanism of the enhanced response and the response saturation characteristic of the Ag@RNWs. The promotion of TMAH etching-induced microstructure modulation to sensing properties was also demonstrated.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b10584

DOI: 10.1021/acsami.7b10584

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.