3 years ago

H2V3O8 Nanowires as High-Capacity Cathode Materials for Magnesium-Based Battery

H2V3O8 Nanowires as High-Capacity Cathode Materials for Magnesium-Based Battery
Han Tang, Wen Luo, Fangyu Xiong, Qinyou An, Shuangshuang Tan, Nuo Xu, Liqiang Mai, Cunyuan Pei
Magnesium-based batteries have received much attention as promising candidates to next-generation batteries because of high volumetric capacity, low price, and dendrite-free property of Mg metal. Herein, we reported H2V3O8 nanowire cathode with excellent electrochemical property in magnesium-based batteries. First, it shows a satisfactory magnesium storage ability with 304.2 mA h g–1 capacity at 50 mA g–1. Second, it possesses a high-voltage platform of ∼2.0 V vs Mg/Mg2+. Furthermore, when evaluated as a cathode material for magnesium-based hybrid Mg2+/Li+ battery, it exhibits a high specific capacity of 305.4 mA h g–1 at 25 mA g–1 and can be performed in a wide working temperature range (−20 to 55 °C). Notably, the insertion-type ion storage mechanism of H2V3O8 nanowires in hybrid Mg2+/Li+ batteries are investigated by ex situ X-ray diffraction and Fourier transform infrared. This research demonstrates that the H2V3O8 nanowire cathode is a potential candidate for high-performance magnesium-based batteries.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09924

DOI: 10.1021/acsami.7b09924

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.