5 years ago

Electron-Donor and -Acceptor Agents Responsible for Surface Modification Optimizing Electrochemical Performance

Electron-Donor and -Acceptor Agents Responsible for Surface Modification Optimizing Electrochemical Performance
Hae Woong Yang, Young Gun Ko, Muhammad Prisla Kamil, Wail Al Zoubi
The electrochemical roles of electron-donor and -acceptor agents in surface reforming of magnesium alloy were investigated via plasma electrolysis. The surface modification was performed in an aluminate-based electrolyte, having urea and hydrazine with inherent molecular structures, which might act as electron acceptor and donor during plasma-assisted electrochemical reaction. The presence of hydrazine working as donor would promote the formation of magnesium aluminates in the oxide layer, resulting in superior compactness of the oxide layer to that when urea was used as the working as acceptor since the precipitation of MgCO3 was favored in the electrolyte with urea. The thickness of the oxide layer formed by a combination of urea and hydrazine was higher than urea, while the porosity was higher than hydrazine. The electrochemical performance was enhanced in the order of hydrazine, urea and hydrazine combined, and urea, which was discussed on the basis of impedance interpretation.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05773

DOI: 10.1021/acsami.7b05773

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.