5 years ago

In Situ Atomic Force Microscopic Studies of Single Tin Nanoparticle: Sodiation and Desodiation in Liquid Electrolyte

In Situ Atomic Force Microscopic Studies of Single Tin Nanoparticle: Sodiation and Desodiation in Liquid Electrolyte
Fangyi Cheng, Zhanliang Tao, Qing Zhao, Jun Chen, Chengcheng Chen, Chenbo Zhu, Wei Xie, Mo Han
Probing electrodes at a nanometer scale is challenging but desirable to reveal the structural evolution of materials in electrochemical reactions. Herein, we present an atomic force microscopic method for an in situ analysis of a single Sn nanoparticle during sodiation and desodiation, which is conducted in an aprotic liquid electrolyte akin to a real electrochemical environment of the Na-ion cells. The morphological evolution of different-sized single Sn nanoparticle is visualized during the charge/discharge cycles by using a homemade planar electrode. All of the Sn nanoparticles exhibit a dramatic initial volume expansion of about 420% after sodiation to Na15Sn4. Interestingly, we find that the smaller Sn nanoparticles show a lower rate of irreversible volume change and a better shape maintenance than the larger ones after desodiation. This finding suggests the importance of downsizing in improving the mechanical stability and the cycling performance of the Sn-based anodes in sodium-ion batteries.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08870

DOI: 10.1021/acsami.7b08870

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.