5 years ago

Additive Partial Least Squares for efficient modelling of independent variance sources demonstrated on practical case studies

Additive Partial Least Squares for efficient modelling of independent variance sources demonstrated on practical case studies
A model recalibration method based on additive Partial Least Squares (PLS) regression is generalized for multi-adjustment scenarios of independent variance sources (referred to as additive PLS - aPLS). aPLS allows for effortless model readjustment under changing measurement conditions and the combination of independent variance sources with the initial model by means of additive modelling. We demonstrate these distinguishing features on two NIR spectroscopic case-studies. In case study 1 aPLS was used as a readjustment method for an emerging offset. The achieved RMS error of prediction (1.91 a.u.) was of similar level as before the offset occurred (2.11 a.u.). In case-study 2 a calibration combining different variance sources was conducted. The achieved performance was of sufficient level with an absolute error being better than 0.8% of the mean concentration, therefore being able to compensate negative effects of two independent variance sources. The presented results show the applicability of the aPLS approach. The main advantages of the method are that the original model stays unadjusted and that the modelling is conducted on concrete changes in the spectra thus supporting efficient (in most cases straightforward) modelling. Additionally, the method is put into context of existing machine learning algorithms.

Publisher URL: www.sciencedirect.com/science

DOI: S0003267017314502

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.