5 years ago

Novel dissymmetric 3,5-bis(arylidene)-4-piperidones as potential antitumor agents with biological evaluation in vitro and in vivo

Novel dissymmetric 3,5-bis(arylidene)-4-piperidones as potential antitumor agents with biological evaluation in vitro and in vivo
Thirty-five novel dissymmetric 3,5-bis(arylidene)-4-piperidone derivatives (BAPs, 6a-h, 7a-h, 8a-g, 9a-g, 10a-e) were synthesized and evaluated the cytotoxicity. BAPs 6d, 7h, 8g, 9g demonstrated the most potentially inhibitory activities against HepG2 and THP-1 but lower cytotoxicity toward LO2. In vitro, 6d, 7h, 8g, 9g can effectively up-regulate BAX expression, down-regulate Bcl-2 expression in HepG2 cell. They could reasonably bind to the active site of Bcl-2 protein proved by molecular docking modes. The most active BAP 6d induced HepG2 cells apoptosis in a dose-dependent manner by flow cytometrey. The cellular uptake of HepG2 cells showed 6d mainly accumulated into the nuclei by confocal laser scanning microscopy (CLSM). In vivo, 6d suppressed the growth of HepG2 xenografts in nude mice and relatively nontoxic to mice. These results suggest that 6d could be therapeutically beneficial as potential therapeutic agent for the early clinical treatment of liver cancers.

Publisher URL: www.sciencedirect.com/science

DOI: S0223523418301107

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.