5 years ago

Effect of dissolved oxygen on nitrogen removal and the microbial community of the completely autotrophic nitrogen removal over nitrite process in a submerged aerated biological filter

Dissolved oxygen (DO) is a crucial parameter of the completely autotrophic nitrogen removal over nitrite (CANON) process. This study determined the nitrogen removal performance and microbial community of the CANON process in a laboratory-scale submerged aerated biological filter (SABF) over a DO concentration range from 0 to 1.2 mg·L−1. The results showed that the optimum DO (0.2–0.3 mg·L−1) corresponded to an average ammonium nitrogen removal efficiency of 93.4% and a total nitrogen removal efficiency of 81.0%. A 16S rRNA gene high-throughput sequencing technology confirmed that the phyla Proteobacteria and Nitrospirae enriched, whereas the phylum Planctomycetes was inhibited with increasing DO concentration. At the genus level, the increase of DO concentration resulted in the enrichment of genera Dok59 and Nitrospira, but restrained the genus Candidatus Brocadia. This research can be used to improve the nitrogen removal ability of the CANON process in an SABF in the future.

Publisher URL: www.sciencedirect.com/science

DOI: S0960852418300518

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.