3 years ago

Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures

Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures
Kelvin Wai Kwok Yeung, Congyang Mao, Xianbao Wang, Zhenduo Cui, Xiangmei Liu, Shuilin Wu, Xianjin Yang, Yiming Xiang, Paul K. Chu, Haobo Pan
Ag/Ag@AgCl/ZnO hybrid nanostructures are embedded in a hydrogel by a simple two-step technique. The Ag/Ag@AgCl nanostructures are assembled in the hydrogel via ultraviolet light chemical reduction followed by incorporation of ZnO nanostructures by NaOH precipitation. The hydrogel accelerates wound healing and exhibits high antibacterial efficiency against both Escherichia coli and Staphylococcus aureus under visible light irradiation. The Ag/Ag@AgCl nanostructures enhance the photocatalytic and antibacterial activity of ZnO due to the enhancement of reactive oxygen species by visible light. This hydrogel system kills 95.95% of E. coli and 98.49% of S. aureus within 20 min upon exposure to simulated visible light, and rapid sterilization plays a crucial role in wound healing. In addition, this system provides controllable, sustained release of silver and zinc ions over a period of 21 days arising from the reversible swelling–shrinking transition of the hydrogel triggered by the changing pH value in the biological environment. About 90% Zn2+ release is observed in the acidic environment after 3 days, whereas only 10% Zn2+ release occurs in the neutral environment after 21 days. In vivo results show that release of Ag+ and Zn2+ stimulates the immune function to produce a large number of white blood cells and neutrophils (2–4 times more than the control), thereby producing the synergistic antibacterial effects and accelerated wound healing.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b03513

DOI: 10.1021/acsnano.7b03513

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.