3 years ago

Compound Specific Stable Chlorine Isotopic Analysis of Volatile Aliphatic Compounds Using Gas Chromatography Hyphenated with Multiple Collector Inductively Coupled Plasma Mass Spectrometry

Compound Specific Stable Chlorine Isotopic Analysis of Volatile Aliphatic Compounds Using Gas Chromatography Hyphenated with Multiple Collector Inductively Coupled Plasma Mass Spectrometry
Matthias Gehre, Hans-Hermann Richnow, Julian Renpenning, Axel Horst
Stable chlorine isotope analysis is increasingly used to characterize sources, transformation pathways, and sinks of organic aliphatic compounds, many of them being priority pollutants in groundwater and the atmosphere. A wider use of chlorine isotopes in environmental studies is still inhibited by limitations of the different analytical techniques such as high sample needs, offline preparation, confinement to few compounds and mediocre precision, respectively. Here we present a method for the δ37Cl determination in volatile aliphatic compounds using gas chromatography coupled with multiple-collector inductively coupled plasma mass spectrometry (GC-MC-ICPMS), which overcomes these limitations. The method was evaluated by using a suite of five previously offline characterized in-house standards and eight chlorinated methanes, ethanes, and ethenes. Other than in previous approaches using ICP methods for chlorine isotopes, isobaric interference of the 36ArH dimer with 37Cl was minimized by employing dry plasma conditions. Samples containing 2–3 nmol Cl injected on-column were sufficient to achieve a precision (σ) of 0.1 mUr (1 milliurey = 0.001 = 1‰) or better. Long-term reproducibility and accuracy was always better than 0.3 mUr if organics were analyzed in compound mixtures. Standardization is carried out by using a two-point calibration approach. Drift, even though very small in this study, is corrected by referencing versus an internal standard. The presented method offers a direct, universal, and compound-specific procedure to measure the δ37Cl of a wide array of organic compounds overcoming limitations of previous techniques with the benefits of high sensitivity and accuracy comparable to the best existing approaches.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01875

DOI: 10.1021/acs.analchem.7b01875

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.