3 years ago

Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A

Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A
The effect of temperature on the reaction of alcohol oxidation catalyzed by choline oxidase was investigated with the S101A variant of choline oxidase. Anaerobic enzyme reduction in a stopped-flow spectrophotometer was biphasic using either choline or 1,2-[2H4]-choline as a substrate. The limiting rate constants k lim1 and k lim2 at saturating substrate were well separated (k lim1/k lim2 >9), and were >15-fold slower than for wild-type choline oxidase. Solvent deuterium kinetic isotope effects (KIEs) ~4 established that k lim1 probes the proton transfer from the substrate hydroxyl to a catalytic base. Primary substrate deuterium KIEs ≥7 demonstrated that k lim2 reports on hydride transfer from the choline alkoxide to the flavin. Between 15°C and 39°C the k lim1 and k lim2 values increased with increasing temperature, allowing for the analyses of H+ and H transfers using Eyring and Arrhenius formalisms. Temperature-independent KIE on the k lim1 value (H2O k lim1/D2O k lim1) suggests that proton transfer occurs within a highly reorganized tunneling-ready-state with a narrow distribution of donor-acceptor distances. Eyring analysis of the k lim2 value gave lines with the slope(choline) >slope(D-choline), suggesting kinetic complexity. Spectral evidence for the transient occurrence of a covalent flavin-substrate adduct during the first phase of the anaerobic reaction of S101A CHO with choline is presented, supporting the notion that an important role of amino acid residues in the active site of flavin-dependent enzymes is to eliminate alternative reactions of the versatile enzyme-bound flavin for the reaction that needs to be catalyzed.

Publisher URL: www.sciencedirect.com/science

DOI: S157096391730184X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.