4 years ago

Pseudo-peptide amyloid-β blocking inhibitors: Molecular dynamics and single molecule force spectroscopy study

Pseudo-peptide amyloid-β blocking inhibitors: Molecular dynamics and single molecule force spectroscopy study
By combining MD simulations and AFS experimental technique, we demonstrated a powerful approach for rational design and single molecule testing of novel inhibitor molecules which can block amyloid-amyloid binding – the first step of toxic amyloid oligomer formation. We designed and tested novel pseudo-peptide amyloid-β (Aβ) inhibitors that bind to the Aβ peptide and effectively prevent amyloid-amyloid binding. First, molecular dynamics (MD) simulations have provided information on the structures and binding characteristics of the designed pseudo-peptides targeting amyloid fragment Aβ (1323). The binding affinities between the inhibitor and Aβ as well as the inhibitor to itself have been estimated using Umbrella Sampling calculations. Atomic Force Spectroscopy (AFS) was used to experimentally test several proposed inhibitors in their ability to block amyloid-amyloid binding – the first step of toxic amyloid oligomer formation. The experimental AFS data are in a good agreement with theoretical MD calculations and demonstrate that three proposed pseudo-peptides bind to amyloid fragment with different affinities and all effectively prevent Aβ-Aβ binding in similar way. We propose that the designed pseudo-peptides can be used as potential drug candidates to prevent Aβ toxicity in Alzheimer's disease.

Publisher URL: www.sciencedirect.com/science

DOI: S1570963917301991

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.