4 years ago

Surface modification of ion-exchange membranes: Methods, characteristics, and performance

Surface modification of ion-exchange membranes: Methods, characteristics, and performance
Khoiruddin, I Gede Wenten, Subagjo, Danu Ariono
Considerable effort has been made to improve ion-exchange membrane (IEM) properties in order to achieve better performance of IEM-based processes in various applications. Surface modification is one of the effective ways to improve IEM properties. Various methods have been used to modify IEM surfaces, for example, plasma treatment, polymerization, solution casting, electrodeposition, and ion implantation. These methods are able to produce a thin and fine distributed layer and also to modify the chemical structure of the surface. The new layer can be adsorbed, deposited, or chemically bonded on a membrane surface. By using these methods, IEM properties are improved, and the desired or specific characteristics such as high monovalent ion permselectivity, low fuel crossover, and anti-organic-fouling property can be obtained. In this paper, methods for surface modification of IEMs are reviewed. Moreover, the effects of modification on IEM properties and performance are discussed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45540.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45540

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.