5 years ago

Bio-based flexible polyurethane foams derived from succinic polyol: Mechanical and acoustic performances

Bio-based flexible polyurethane foams derived from succinic polyol: Mechanical and acoustic performances
Letizia Verdolotti, Mariamelia Stanzione, Maurizio Tarello, Marino Lavorgna, Andrea Sorrentino, Salvatore Iannace, Maria Oliviero
Polyurethane foams have widespread applications as temperature insulators, sound barriers and shock absorbers. The market requests for these materials growth annually and its production pose serious environmental problems. In this article, several polyurethane foams compositions are obtained by partially replacing a conventional synthetic polyol with a new bio-polyol made from succinic acid. The effects of water content, carbon black addition and bio-succinic polyol replacement on foam properties are investigated. Results show that the addition of bio-succinic polyol significantly changes the foam morphology leading to both an increase of the interconnectivity and an enhancement of mechanical properties. Furthermore, the addition of carbon black modifies the cell morphology and increases the foam density; consequently, an improvement in sound insulation performance at high frequency values is recorded. Due to this peculiar combination of mechanical and acoustic properties, the produced bio-foams may be considered as potential substitutes of conventional flexible polyurethane foams to reduce vibrations, noise pollution, and consequently increase comfort in automobile and aircraft industries. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45113.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45113

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.