5 years ago

Defect generation in Pd layers by ‘smart’ films with high H-affinity

Astrid Pundt, Vladimir Burlaka, Vladimir Roddatis, Marian David Bongers
In this paper, we demonstrate that the microstructure and the surface of a thin palladium (Pd) film can be intentionally altered by the presence of a subjacent niobium (Nb) film. Depending on the thickness of the Nb film and on the hydrogen gas pressure, defects in the Pd film can be healed or created. To demonstrate this effect, Pd/Nb/sapphire (Al2O3) stacks are studied during hydrogen gas exposure at room temperature by using scanning tunneling microscopy (STM), X-ray diffraction (XRD) and environmental transmission electron microscopy (ETEM). STM shows that hydrogen-induced topography changes in the Nb films depend on the film thickness which affects the height of the Nb surface corrugations, their lateral size and distribution. XRD measurements show that these changes in the Nb hydride film influence the microstructure of the overlaying Pd film. ETEM reveals that the modifications of the Pd film occur due to the precipitation and growth of the Nb hydride phase. The appearance of new defects, interface and surface roughening is observed in the Pd film above locally grown Nb hydride grains. These results can open a new route to design ‘smart’ catalysts or membranes, which may accommodate their microstructure depending on the gaseous environment.

Publisher URL: https://www.nature.com/articles/s41598-017-09900-z

DOI: 10.1038/s41598-017-09900-z

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.