5 years ago

DFT study of acceleration of electrocyclization in photochromes under radical cationic conditions: Comparison with recent experimental data

DFT study of acceleration of electrocyclization in photochromes under radical cationic conditions: Comparison with recent experimental data
Radical cation formation is proposed for the rapid cyclization of 1, 2-bis[5-phenyl-2-methylthien-3-yl]cyclopentene and oligothiophene functionalized dimethyldihydropyrenes (DMDHP). Density functional theory calculations have been performed to rationalize the effect of a radical cation on the activation barrier of different classes of electrocyclic photochromes (DHP, dithienylethene, dihydroazulene and fulgide). For exact comparative analysis, the activation barrier of neutral (singlet) analogues at the same level of theory are also calculated. In addition, the concerted nature and aromaticity of transition states were investigated with the help of synchronicity (Sy.) and nuclear independent chemical shift values NICS(0) calculations, respectively, for both the radical cation and neutral systems. In case of the radical cation, thermal return of CPD to DHP, the activation barrier is very low (ΔH = 3.13 kcal mol−1, ΔG = 4.01 kcal mol−1) as compared to the neutral analogue (ΔH = 20.6 kcal mol−1, ΔG = 20.98 kcal mol−1), which is consistent with experimental observations. Similarly for dithenylethenes, radical cation formation has a large impact on the activation barrier (ΔH = 19.44 kcal mol−1, ΔG = 22.29 kcal mol−1). However, radical cation formation has almost negligible impact on the activation barrier of VHF-DHA and fulgide isomerization. The significant difference has been observed for synchronicity and NICS(0) values of all types of photochromes under radical cation conditions as compared to the neutral system.

Publisher URL: www.sciencedirect.com/science

DOI: S0040402017305069

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.