3 years ago

The Spatial Resolution Limit for an Individual Domain Wall in Magnetic Nanowires

The Spatial Resolution Limit for an Individual Domain Wall in Magnetic Nanowires
Marc A. Baldo, Sumit Dutta, Saima A. Siddiqui, Caroline A. Ross, Jean Anne Currivan-Incorvia
Magnetic nanowires are the foundation of several promising nonvolatile computing devices, most notably magnetic racetrack memory and domain wall logic. Here, we determine the analog information capacity in these technologies, analyzing a magnetic nanowire containing a single domain wall. Although wires can be deliberately patterned with notches to define discrete positions for domain walls, the line edge roughness of the wire can also trap domain walls at dimensions below the resolution of the fabrication process, determining the fundamental resolution limit for the placement of a domain wall. Using a fractal model for the edge roughness, we show theoretically and experimentally that the analog information capacity for wires is limited by the self-affine statistics of the wire edge roughness, a relevant result for domain wall devices scaled to regimes where edge roughness dominates the energy landscape in which the walls move.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b03199

DOI: 10.1021/acs.nanolett.7b03199

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.