3 years ago

Thermodynamic and Transport Properties of Crown-Ethers: Force Field Development and Molecular Simulations

Thermodynamic and Transport Properties of Crown-Ethers: Force Field Development and Molecular Simulations
Seyed Hossein Jamali, Shwet Kumar Rinwa, Tim M. Becker, Thijs J. H. Vlugt, Wim Buijs, Mahinder Ramdin
Crown-ethers have recently been used to assemble porous liquids (PLs), which are liquids with permanent porosity formed by mixing bulky solvent molecules (e.g., 15-crown-5 ether) with solvent-inaccessible organic cages. PLs and crown-ethers belong to a novel class of materials, which can potentially be used for gas separation and storage, but their performance for this purpose needs to be assessed thoroughly. Here, we use molecular simulations to study the gas separation performance of crown-ethers as the solvent of porous liquids. The TraPPE force field for linear ether molecules has been adjusted by fitting a new set of torsional potentials to accurately describe cyclic crown-ether molecules. Molecular dynamics (MD) simulations have been used to compute densities, shear viscosities, and self-diffusion coefficients of 12-crown-4, 15-crown-5, and 18-crown-6 ethers. In addition, Monte Carlo (MC) simulations have been used to compute the solubility of the gases CO2, CH4, and N2 in 12-crown-4 and 15-crown-5 ether. The computed properties are compared with available experimental data of crown-ethers and their linear counterparts, i.e., polyethylene glycol dimethyl ethers.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b06547

DOI: 10.1021/acs.jpcb.7b06547

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.