5 years ago

Strain Modulation of Electronic Properties of Monolayer Black Phosphorus

Strain Modulation of Electronic Properties of Monolayer Black Phosphorus
Zhe Zhang, Yipeng Zhao, Gang Ouyang
Recent advances in the fabrication of monolayer black phosphorus (MBP) call for a detailed understanding of the physics underlying the electronic structure and related modulation by the method of strain engineering. Here, we present an analytic study to explore the uniaxial strain effect of band structure in MBP based on the first-principles calculations and atomic-bond-relaxation correlation mechanism. It was found that the stress responses of MBP show evident anisotropy due to different edge type structures. The electronic band structure of MBP can be tuned by the applied strain. Moreover, we propose an analytic expression for the variation of the bandgap induced by the uniaxial strain from the perspective of atomistic origin, which suggests an effective bridge between the measurable quantities and the atomic bond identities of MBP. The underlying mechanism on the strain-dependent band offset can be attributed to the variation of crystal potential induced by the changes of bond length, strength, and angle, providing a better understanding of the modulation of electronic properties with strain engineering.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b06342

DOI: 10.1021/acs.jpcc.7b06342

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.