3 years ago

Controlled Isotropic and Anisotropic Shell Growth in β-NaLnF4 Nanocrystals Induced by Precursor Injection Rate

Controlled Isotropic and Anisotropic Shell Growth in β-NaLnF4 Nanocrystals Induced by Precursor Injection Rate
A. Paul Alivisatos, Joseph K. Swabeck, Stefan Fischer
Precise morphology and composition control is vital for designing multifunctional lanthanide-doped core/shell nanocrystals. Herein, we report controlled isotropic and anisotropic shell growth techniques in hexagonal sodium rare-earth tetrafluoride (β-NaLnF4) nanocrystals by exploiting the kinetics of the shell growth. A drastic change of the shell morphology was observed by changing the injection rate of the shell precursors while keeping all other reaction conditions constant. We obtained isotropic shell growth for fast sequential injection and a preferred growth of the shell layers along the crystal’s c-axis [001] for slow dropwise injection. Using this slow shell growth technique, we have grown rod-like shells around different almost spherical core nanocrystals. Bright and efficient upconversion was measured for both isotropic and rod-like shells around β-NaYF4 nanocrystals doped with Yb3+/Er3+ and Yb3+/Tm3+. Photoluminescence upconversion quantum yield and lifetime measurements reveal the high quality of the core/shell nanocrystal. Furthermore, multishell rod-like nanostructures have been prepared with optically active cores and tips separated by an inert intermediate shell layer. The controlled anisotropic shell growth allows the design of new core/multishell nanostructures and enables independent investigations of the chemistry and physics of different nanocrystal facets.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b07496

DOI: 10.1021/jacs.7b07496

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.