5 years ago

Efficient one-pot hydrogenolysis of biomass-derived xylitol into ethylene glycol and 1,2-propylene glycol over Cu-Ni-ZrO2 catalyst without solid bases

The directly selective hydrogenolysis of xylitol to ethylene glycol (EG) and 1,2-propylene glycol (1,2-PDO) was performed on Cu-Ni-ZrO2 catalysts prepared by a co-precipitation method. Upon optimizing the reaction conditions (518 K, 4.0 MPa H2 and 3 h), 97.0% conversion of xylitol and 63.1% yield of glycols were obtained in water without extra inorganic base. The catalyst still remained stable activity after six cycles and above 80% total selectivity of glycols was obtained when using 20.0% xylitol concentration. XRD, TEM and ICP results indicated that Cu-Ni-ZrO2 catalysts possess favorable stability. Cu and Ni are beneficial to the cleavage of C–O and C–H bond respectively. To reduce the hydrogen consumption, isopropanol was added as in-situ hydrogen source and 96.4% conversion of xylitol with 43.6% yield of glycols were realized.

Publisher URL: www.sciencedirect.com/science

DOI: S2095495617311683

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.